TIGON

Demonstrating hybrid microgrid innovations for greener, more resilient and more secure power networks

TRADITIONAL POWER GRIDS GENERALLY USE ALTERNATING CURRENT.

However, as electric vehicles, LEDs, batteries and renewable energy sources become more mainstream, the share of variable and unpredictable energy is increasing – and this requires the flexible use of direct current.

Connecting distributed DC-generated electricity to the AC main grid often means multiple – and inefficient – conversions.

The infrastructure therefore needs to become more bottom-up, interconnected.

Integrating smarter local grids into the main electricity grid may be part of the answer.

4. 15. 8. 4.

YEARS

PARTNERS

COUNTRIES

SHOWCASES

THE PROJECT

The EU project TIGON will design a **hybrid** alternating and direct current **microgrid system**, one that is decentralised and close to valuable **sources of renewable energy**.

TIGON's technical, digital and business solutions will be developed at two demo sites located in **France** with emphasis on photovoltaics and in **Spain** with a focus on batteries.

In addition, two use cases in the residential and urban railway sectors in **Finland and Bulgaria** will act as niche markets to increase replication potential.

BENEFITS

Advanced hybrid microgrids will enable:

- people to pay less for their electricity;
- grid operators to balance supply and demand more effectively;
- renewable energy generators large and small to gain better access to the market.

Stay up to date with TIGON's latest developments

tigon-project.eu

coordinator@tigon-project.eu

Showcases Representatives

Technology and Research Development

Dissemination - Replication - Communication

Technology manufacturers and Service providers

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 957769