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Abstract: Smart grids constitute a major trend of electrical networks, whose operation is underpinned by innovative 

optimization algorithms. Yet, sometimes, their normal operation is challenged by emergencies that require a 

Decision Support System (DSS) that modifies the Energy Management System (EMS) accordingly, taking into 

account the disconnected components. The purpose of this research is to assess the impact of emergencies on smart 

grids through a novel optimization algorithm. The algorithm comprises an optimizer, which maximizes the 

autonomy of the smart grid, prioritizing its Renewable Energy Sources (RES), and Artificial Neural Networks 

(ANN), which provide forecasts related to intermittent RES production. The assessment of each emergency includes 

the reduction of autonomy and sustainability of the smart grid’s operation, with respect to curtailments, CO2 

emissions, etc. The algorithm is applied on a model of an actual smart grid in Spain, investigating a variety of cases 

in order to highlight the impact of each component’s disconnection on the smart grid for various time intervals of 

the day. According to the results, an emergency affecting the smart grid’s RES during noon might cause up to 46% 

reduction of its autonomy and an emergency affecting the storage might cause curtailments up to 25% of RES 

production. 
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1. Introduction 

The ongoing energy transition has affected the concept of distribution networks, which have turned from 

passive, unidirectional and fuel-based architectures into active and sustainable smart grids [1,2]. This trend has 

established a research field related to the optimal management of the smart grid’s resources [3,4], such as Renewable 

Energy Sources (RES), Battery Energy Storage Systems (BESS), local fuel-based generators, etc. Therefore, a 

variety of tools, algorithms and platforms have been developed in order to assist the operators of smart grids with 

the respective Energy Management System (EMS), forecasts, maintenance strategies, investments and decisions 

[5,6]. 

Yet, the main focus of the developed tools is the optimal daily operation, including energy market models, 

optimization of energy dispatch and power flow analysis [7,8]. Less attention is paid to the emergencies that might 

occur in a smart grid, the impact they might have on the system in terms of autonomy, sustainability and cost, and 

possible solutions to overcome these situations [9,10]. Nevertheless, this is an important topic, especially when the 

following factors are considered: i) the current energy crisis, ii) the lack of stability in systems with increased 

dependency on intermittent RES, and iii) the consumers’ need for low System Average Interruption Duration Index 

(SAIDI) and System Average Interruption Frequency Index (SAIFI) [11]. 

There are many types of emergencies that a smart grid might face and many ways to handle them, depending 

on the nature and early detection of the issue [12]. For instance, a usual emergency is the partial blackout; a situation 

where part of the grid’s generators, storage units, RES or load are disconnected and need repairs, while the energy 

dispatch is being modified [13]. Another example is the disconnection from the main grid, which requires islanded 

operation, if the smart grid’s components support it. Also there might be a total blackout [14], where the smart 

grid’s operator needs to perform black start. For this purpose, respective tools are developed, either individually or 

as part of a wider Decision Support System (DSS) for the operator.  
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In this context, Miao et al. [15] propose an emergency energy management especially designed for AC/DC 

microgrids in industrial parks, including a variety of Distributed Energy Resources (DER) and storage. The 

developed Mixed-Integer NonLinear Programming (MINLP) method has a multi-objective optimizer, the purpose 

of which is to: i) maximize the power supply to the load, ii) minimize the number of switching operations, and iii) 

minimize the cost of power generation. The authors display the performance of their algorithm in case the industrial 

park becomes islanded without a fault in the inner configuration and in case one of the generators is disconnected, 

while the park is islanded. In [16] an energy management strategy for microgrid emergency islanded operation is 

proposed. The strategy is rule-based and focuses on the cost of the modified operation during the emergency. Its 

performance is tested on a grid with DER, storage, residential load and Electric Vehicles (EVs), considering cases 

with adequate/inadequate reserve capacity and excessive RES generation. Also related to grids with EVs, in [17], 

an algorithm for handling outages due to natural disasters in small districts is presented. The study considers two 

commercial and residential buildings (four in total) with a shared parking station for their EVs. The purpose of the 

optimization algorithm is to minimize the cost, taking into account that the EVs can also be discharged. According 

to the results, the proposed energy management options can practically minimize the energy cost and improve 

energy resilience following blackouts. Furthermore, it is found that the EVs are capable of reducing energy cost by 

approximately 25% and supply the load during outages that last for seven hours. Following another approach, 

Lamedica et al. [18] present an innovative framework for the selection of electrical loads in smart buildings when 

the main power sources are limited or even totally absent due to an emergency situation. The control strategy is 

based on the Knapsack Problem. Results from Tabu Search, greedy heuristic and dynamic programming algorithms 

are compared to each other. According to the analysis, the authors state that the method of dynamic programming 

for an emergency scenario exhibits superior characteristics. 

Furthermore, there are studies and algorithms where the emergencies need to be taken into account by a more 

general algorithm related to grid planning or optimal operation. For example, Lagrange et al. [19] aim to improve 

the electrical grid of a hospital to ensure the seamless operation of the surgery and the secure storage of safety 

stocks, by enabling its partial autonomy with a cost-efficient and sustainable way. The grid includes a Photovoltaic 

(PV) system, diesel generators and a BESS. The study examines two main objectives: i) the resilience of power 

supply when a power failure happens and ii) the optimization of the system in terms of the components’ size to 

simultaneously attain economic profitability and resilience capacity. Based on the results, the hospital may save 

approximately $ 440,191 on average, over a 20-year life cycle of the facility, when PVs, BESS and diesel generators 

are installed. Emergencies may also be taken into account in day-ahead strategies, as in [20], where Das et al. 

propose a day-ahead optimal bidding strategy, taking into account uncertainties and outages of RES. The bidding 

model is optimized using MINLP and the uncertainties are modeled via probability density functions. The goal is 

to maximize the grid’s profit with optimal risk management. The proposed strategy is tested on a grid with gas 

turbines, PVs, Wind Generators (WGs) and storages. In addition, the authors present an extensive risk analysis of 

expected bidding profits, including different associated “weights” and variations of RES production. Finally, 

Mansour - lakouraj et al. [21] propose a risk-based energy management for both normal and emergency operation, 

whose purpose is to minimize the operation cost. The test grid comprises generators, WGs and a storage system. It 

is highlighted that in order to generate scenarios for modeling the wind and real-time market price behaviors, the 

model uses the AutoRegressive Moving Average (ARMA). The authors examine a variety of emergencies, 

investigating the influence of the operator's risk. 

It is evident that there is a variety of algorithms related to emergencies in smart grids. Yet, the vast majority of 

them focuses on cost minimization, neglecting the current energy crisis and the subsequent need for autonomy and 

sustainability, or focus in a specific case study, thus not providing a generalized solution. The purpose of this 

research is to present an algorithm for the optimal EMS of smart grids during an emergency, aiming to maximize 

its autonomy, prioritizing its RES production. Therefore, it expands the scope of [15–21], following the modern 

requirements for self-sufficiency. Furthermore, the developed algorithm not only proposes the optimal solution but  



also assesses the impact of the emergency in terms of autonomy and sustainability, compared to normal operation.  

For this purpose, it utilizes an optimizer for the modified EMS and Artificial Neural Networks (ANN) for the 

forecast of unknown parameters (RES production), as in Figure 1. The algorithm is part of the DSS developed in 

the context of the European Horizon 2020 TIGON project [22] and is tested on one of its demo-grid’s models, 

which is the smart grid of CIEMAT [23], located in Spain, including PVs, a WG, two BESS, a small diesel 

 
Figure 1: Flow chart of the proposed algorithm. 



generator, residential load and EVs. The impact assessment of emergencies is performed for fifteen cases, each 

considering the disconnection of different major components. The evaluation criteria are the level of autonomy, the 

exhibited CO2 emissions, RES contribution, curtailments and post-emergency assessment, which is mostly related 

to the status of the storage after the emergency. 

2. Methodology 

2.1 Algorithm description 

The basic concept of the algorithm for handling emergencies and assessing their impact is presented in Figure 

1. Once the emergency is detected, the faulty part of the smart grid, potentially including DER, BESS, etc., needs 

to be disconnected. Therefore, the optimizer is automatically modified, excluding the faulty component from the 

model, and uses the current smart grid measurements as input (PV and WG production, load, state of charge of the 

BESS, etc.). The output of the modified optimal EMS comprises the optimal decisions regarding: i) the 

charge/discharge of each BESS, ii) the fuel-based production and iii) RES curtailments, if required. The output 

refers to a certain time-step, which lasts for one hour, and needs to be directly applied to the smart grid. Once the 

time-step changes, the algorithm needs to be informed by the monitoring system about the status of the ongoing 

repairing actions. In case the repairing actions are not completed, the new smart grid measurements need to be used 

as input in order for the modified EMS to derive the optimal decisions for the new hourly time-step. The loop is 

repeated for as many time-steps as required until the repair is finished. 

At that point, the impact of the emergency needs to be assessed. This is performed by comparing the results of 

the modified optimal EMS to the results that would have been provided by the normal EMS, if the emergency had 

been prevented. For this purpose, the normal EMS needs to use stored data, such as demand for the emergency’s 

time-steps, or data that are not even available, such as the PV or the WG production that would have been measured 

in case these components had not been disconnected due to the emergency event. In order to generate the respective 

data, the algorithm incorporates two ANNs, one for the PV and one for the WG production. These ANNs are 

described in detail in sub-section 2.3. Finally, the results are compared in terms of autonomy, which is the objective 

of the smart grid’s control, use of RES, CO2 emissions, curtailments and post-emergency expected behavior. 

2.2 Optimizer description 

The basis of the algorithm is the optimizer, the objective (1) of which is to maximize the autonomy of the smart 

grid, using all available resources, prioritizing RES production for sustainability reasons. More specifically, the use 

of RES production has zero weight (as the optimal choice), thus not being included in the objective function. The 

second preferable supply units are the smart grid’s BESS, since the optimizer considers them to be charged only by 

RES, presenting eco-friendly behavior. Therefore, the energy discharged from each BESS, 𝐷𝑏, has the lowest 

weight, 𝑤1. The next preferable supply units are the smart grid’s diesel generators, the production, 𝐺𝑔, of which has 

a higher weight than the BESS, 𝑤2. For the sake of autonomy, the least preferable source is the main grid, the 

contribution, 𝑀, of which has the highest weight out of all sources, 𝑤3. Finally, in order to ensure the maximum 

possible autonomy and the maximum use of RES production, the curtailed energy from each RES, 𝑅𝑟
𝑐𝑢𝑟𝑡, has the 

highest weight of all, 𝑤4. 

min 𝐹 = 𝑤1 ∑ 𝐷𝑏

𝑏

+ 𝑤2 ∑ 𝐺𝑔

𝑔

+ 𝑤3𝑀 + 𝑤4 ∑ 𝑅𝑟
𝑐𝑢𝑟𝑡

𝑟

 (1) 

The objective function is limited by constraints that model the smart grid’s components. Of course, when one 

or more components need to be disconnected, the respective decision variables and constraints are automatically 

removed from the EMS.  In particular, constraints (2) - (6) refer to each BESS [24]. Constraint (2) is the energy 



balance of each BESS, where 𝑆𝑏 is the stored energy, 𝑆𝑏
𝑖𝑛𝑖 is the initial stored energy at the current time-step, 𝐶𝑏 is 

the energy charged to each BESS and 𝜂𝑏 is the efficiency. Constraint (3) limits the stored energy of each BESS 

according to its minimum and maximum boundaries, 𝑆𝑏
𝑚𝑖𝑛 and 𝑆𝑏

𝑚𝑎𝑥, respectively. The maximum energy that can 

be discharged from / charged to each BESS at each time-step is limited by the boundaries 𝐷𝑏
𝑚𝑎𝑥and 𝐶𝑏

𝑚𝑎𝑥, in 

constraints (4) and (5), where 𝑢𝑏
𝑑𝑐ℎ and 𝑢𝑏

𝑐ℎ are binary variables that indicate whether the BESS is discharged or 

charged, respectively. Finally, constraint (6) ensures that the BESS cannot be discharged and charged 

simultaneously. 

𝑆𝑏 = 𝑆𝑏
𝑖𝑛𝑖 + 𝐶𝑏𝜂𝑏 − 𝐷𝑏/𝜂𝑏 (2) 

𝑆𝑏
𝑚𝑖𝑛 ≤ 𝑆𝑏 ≤ 𝑆𝑏

𝑚𝑎𝑥 (3) 

𝐷𝑏 ≤ 𝐷𝑏
𝑚𝑎𝑥𝑢𝑏

𝑑𝑐ℎ (4) 

𝐶𝑏 ≤ 𝐶𝑏
𝑚𝑎𝑥𝑢𝑏

𝑐ℎ (5) 

𝑢𝑏
𝑑𝑐ℎ + 𝑢𝑏

𝑐ℎ = 1 (6) 

Constraints (7) and (8) limit the contribution of each diesel generator, 𝐺𝑔, according to the maximum and 

minimum values, 𝐺𝑔
𝑚𝑎𝑥 and 𝐺𝑔

𝑚𝑖𝑛, respectively, where 𝑢𝑔
𝑜𝑛 is the binary variable that indicates whether the diesel 

generator is activated or not. 

𝐺𝑔 ≤ 𝐺𝑔
𝑚𝑎𝑥𝑢𝑔

𝑜𝑛 (7) 

𝐺𝑔 ≥ 𝐺𝑔
𝑚𝑖𝑛𝑢𝑔

𝑜𝑛 (8) 

Constraint (9) refers to the RES production of the 𝑟-th plant, 𝑅𝑟, which can either be used in the smart grid, 

𝑅𝑟
𝑢𝑠𝑒, or curtailed, 𝑅𝑟

𝑐𝑢𝑟𝑡. 

𝑅𝑟 = 𝑅𝑟
𝑢𝑠𝑒 + 𝑅𝑟

𝑐𝑢𝑟𝑡 (9) 

Finally, constraint (10) is the energy balance of the smart grid at each time-step, where 𝐿𝑙 is the load of the 𝑙-th 

node. 

∑ 𝐿𝑙

𝑙

+ ∑ 𝐶𝑏

𝑏

= ∑ 𝐷𝑏

𝑏

+ ∑ 𝐺𝑔

𝑔

+ ∑ 𝑅𝑟
𝑢𝑠𝑒

𝑟

+ 𝑀 (10) 

Regarding the load, it should be highlighted that it might comprise both usual building-related consumption, 

e.g., heating and lights, and Electric Vehicle (EV) demand [25]. The energy balance of an EV, 𝑣, while moving, at 

each time-step, is presented in (11), where 𝑆𝑣 is the stored energy in its battery, 𝑆𝑣
𝑖𝑛𝑖 is the initial stored energy, 𝐷𝑣 

is the energy required for transportation and 𝜂𝑣 is the EV’s efficiency. When being charged, the energy balance is 

presented in (12), where 𝐶𝑣 is the energy drawn from the grid to charge the EV. Certainly, as in all storage systems, 

the stored energy is limited by the minimum and maximum technical boundaries, 𝑆𝑣
𝑚𝑖𝑛 and 𝑆𝑣

𝑚𝑎𝑥, respectively, 

presented in (13), while the maximum energy that can be charged to each EV per time-step is limited by (14). 

Finally, the survey of the European Commission found in [26] suggests that the time intervals when EV owners are 

willing to charge their vehicles follow the profile, 𝑃𝑡, presented in (15). This profile can be helpful especially when 

the operator needs to derive profiles for EV charging and aggregate them to the overall load of the smart grid. 



𝑆𝑣 = 𝑆𝑣
𝑖𝑛𝑖 − 𝐷𝑣/𝜂𝑣 (11) 

𝑆𝑣 = 𝑆𝑣
𝑖𝑛𝑖 + 𝐶𝑣𝜂𝑣 (12) 

𝑆𝑣
𝑚𝑖𝑛 ≤ 𝑆𝑣 ≤ 𝑆𝑣

𝑚𝑎𝑥 (13) 

𝐶𝑣 ≤ 𝐶𝑣
𝑚𝑎𝑥 (14) 

𝑃𝑡 = {

100%, 𝑡 ∈ [00: 00, 06: 00) ∪ [22: 00, 00: 00)

10%, 𝑡 ∈ [06: 00, 08: 30) ∪ [18: 00, 22: 00)

50%, 𝑡 ∈ [08: 30, 18: 00)
 (15) 

Overall, this constitutes a Mixed Integer Linear Programming (MILP) problem. The results of the proposed 

methodology have been verified with the use of PowerFactory, DIgSILENT [27], on models of the demo-grids of 

the TIGON project.  

2.3 ANN description 

For the forecast of unknown parameters, which in this case are the PV and WG production, the algorithm uses 

the output of two ANNs respectively [28,29]. ANNs are a type of machine learning algorithm modeled after the 

structure and function of the human brain [30] and consist of interconnected processing nodes, known as artificial 

neurons, which are organized in layers.  

An artificial neuron is the fundamental unit of an ANN. It functions as a simple processing node that receives 

input signals, performs computations, and produces an output signal [31]. Each artificial neuron receives input 

signals from other neurons through its incoming synapses, each represented by a weight value to denote the 

respective strength. The neuron computes the weighted sum of its inputs and applies an activation function to 

determine whether to produce an output signal. The output signal is then passed to its adjacent neurons through its 

outgoing synapses. The combination of these simple processing nodes organized in a network structure allows 

ANNs to perform complex computations and make predictions based on patterns of the input data. 

The output of a single artificial neuron is calculated as follows: 

𝑦 = 𝑓((∑ 𝑤𝑗𝑥𝑗) + 𝑏

 

𝑗

) (16) 

, where 𝑥𝑗 and 𝑤𝑗 are the input signal and the weight of the incoming synapses, respectively, for the neuron’s 

𝑗-th edge. Moreover, 𝑏 is the neuron’s bias, 𝑓 the neuron’s activation function and 𝑦 the neuron’s output. The 

weights and bias represent the trainable parameters of the neuron and can change their values to achieve a certain 

behavior on the output when provided with a certain input.  

The structure of an ANN, when multiple neurons are combined in layers, is depicted in Figure 2. Three types 

of layers can be found in an ANN: i) the input layer, where a vector of values is provided to the ANN as input, ii) 

the hidden layers, which contain the majority of ANN’s neurons to perform computations, and iii) the output layer, 

where the output vector is produced, after the input processing by the hidden layers. ANNs are trained using 

supervised learning, according to which the network is provided with a labeled dataset and the algorithms optimize 

the weights of the neurons’ edges to minimize the error between the predicted output and the actual output [32]. 

This process is repeated for multiple iterations to refine the model's accuracy. 



For the purposes of this study, two different ANNs are trained for forecasting PV and WG production. Their 

characteristics are presented in Table 1. The inputs of the PV model, to yield the PV production, are the direct and 

diffuse irradiance, and the ambient temperature for the PV’s location. The input of the WG model, to yield the wind 

production, is the wind speed for the WG’s location. The activation function used in the hidden and output layers 

for both models is the Rectified Linear Unit (ReLU) [33]. 

The ANN models were created using the Tensorflow 2.0 library [34], in Python programming language [35]. 

For processing the data, pandas and scikit-learn libraries were utilized [36,37]. 

3. Smart grid analysis 

3.1 Smart grid components 

The current state of CIEMAT’s smart grid consists of a PV system, a WG, a main and a secondary BESS and 

a load, which presents a peak power equal to 20.7 kW, as in Table 2 [38,39]. Furthermore, for the purposes of this 

study, CIEMAT’s smart grid is considered to also include EVs, following the recent trends in electric traction, and 

a small diesel generator [40,41] to enhance the system’s autonomy by covering the basic/lowest demand. In 

particular, taking into account the average travelling distance [42], the percentage of EVs in Spain [43,44], the load 

peak [45], the charging time preferences [26] and the specifications of EV batteries [46], it can be concluded that a 

realistic approach is the consideration of two EVs, which charge evenly in the time interval [22:00-00:00) with an 

overall demand of 4 kWh. 

 

Figure 2: Graphical structure depicting an ANN with one input layer, one hidden layer and one output layer. 

Table 1: Parameters of the developed ANNs. 

 Inputs Hidden layer neurons Outputs 

PV model 3 10 1 

WG model 1 5 1 



3.2 ANN training and accuracy on the examined smart grid 

Given the location of the examined grid, data input from [38] are used for both ANNs, forming two datasets for 

identical components as the ones used in this study. The first one includes the hourly direct and diffuse irradiance, 

temperature and PV production throughout a reference year, while the second one includes the wind speed and WG 

production. Each dataset contains 8,760 data points. In both cases, 80% of the data points are selected randomly for 

training purposes, whereas the remaining 20% are used for testing the trained models. 

Before training, a form of normalization named min-max feature scaling [47] is applied to scale the training 

data points into the range [0,1], as shown in (17). 

𝑥𝑖
𝑡𝑟𝑎𝑖𝑛,𝑛𝑜𝑟𝑚 =

𝑥𝑖
𝑡𝑟𝑎𝑖𝑛 − 𝑥 

𝑡𝑟𝑎𝑖𝑛,𝑚𝑖𝑛

𝑥 
𝑡𝑟𝑎𝑖𝑛,𝑚𝑎𝑥 − 𝑥 

𝑡𝑟𝑎𝑖𝑛,𝑚𝑖𝑛
 (17) 

, where  𝑥𝑖
𝑡𝑟𝑎𝑖𝑛 and 𝑥𝑖

𝑡𝑟𝑎𝑖𝑛,𝑛𝑜𝑟𝑚
 represent the value of the 𝑖-th row of the training set, before and after 

normalization, respectively, and 𝑥 
𝑡𝑟𝑎𝑖𝑛,𝑚𝑎𝑥 and 𝑥 

𝑡𝑟𝑎𝑖𝑛,𝑚𝑖𝑛 represent the maximum and minimum values in the 

training set. Normalizing the data before training is a frequent procedure, since it improves the neural network’s 

performance and convergence speed. Scaling all the inputs to have values in comparable ranges prevents any 

particular feature from having a disproportionate effect on the overall learning process [48]. 

For testing the model, a similar normalization procedure takes place for the testing data as shown in (18): 

𝑥𝑖
𝑡𝑒𝑠𝑡,𝑛𝑜𝑟𝑚 =

𝑥𝑖
𝑡𝑒𝑠𝑡 − 𝑥 

𝑡𝑟𝑎𝑖𝑛,𝑚𝑖𝑛

𝑥 
𝑡𝑟𝑎𝑖𝑛,𝑚𝑎𝑥 − 𝑥 

𝑡𝑟𝑎𝑖𝑛,𝑚𝑖𝑛
 (18) 

, where 𝑥𝑖
𝑡𝑒𝑠𝑡 and 𝑥𝑖

𝑡𝑒𝑠𝑡,𝑛𝑜𝑟𝑚
 represent the value of the 𝑖-th row of the testing set, before and after normalization, 

respectively. 

The ANNs are trained with the built-in version of Adam [49], which is an optimization algorithm that extends 

Stochastic Gradient Descent [50]. The purpose of the training process is to minimize the Root-Mean-Square Error 

(RMSE) between the forecasted and the real values. The RMSE formula is provided in (19): 

𝑅𝑀𝑆𝐸 = √
∑ (𝐹𝑖 − 𝐴𝑖)2 

𝑖

𝑛
 (19) 

Table 2: CIEMAT’s smart grid basic components. 

Component Nominal values 

RES 

PV Installed system: 22.14 kW, average daily production: 106 kWh [38] 

WG Installed system: 3.5 kW, average daily production: 27 kWh [38] 

BESS 

BESS 1 Pb-acid BESS, Maximum stored energy: 60 kWh, technical minimum: 16.7% 

BESS 2 LiFePo BESS, Maximum stored energy: 24 kWh, technical minimum: 37.5% 

Fuel-based generators 

Diesel generator Nominal power: 5 kW [40], Minimum (for efficient operation): 30% [41] 

Load  

Basic load 20.7 kW peak, following the daily curve of [39] 

EVs Two EVs [46], maximum stored energy: 40 kWh, consumption: 166 Wh/km 



, where 𝐹𝑖 and 𝐴𝑖 are the forecasted and the actual values, respectively, for training set’s 𝑖-th element and 𝑛 is 

the number of data points in the training set. 

For evaluating the performance of the trained models, Mean Absolute Percentage Error (MAPE) is used, which 

is a metric commonly used for the evaluation of forecasting models. The PV model achieves a MAPE of 3.9% in 

the testing set, which is equal to the performance of other models found in literature [28]. The WG, on the other 

hand, has a MAPE performance of 14%, which is acceptable according to literature, where the usual performance 

is between 10% and 20% [29]. It needs to be mentioned that results of forecasting models are highly depended on 

the dataset’s quality. Indicative results of the models’ predictions are presented in Figure 3 - Figure 4. 

 

Figure 3: PV predictions using ANN. 

 

Figure 4: WG predictions using ANN. 



3.3 Simulated representative day and emergency cases’ definition 

The expected operation of a representative day in the examined smart grid is presented in Figure 5. The 

representative day is selected upon the daily RES production. In particular, the PV production on that day is equal 

to 112 kWh and the WG production is equal to 26 kWh, close to the average daily values over a year, i.e., 106 kWh 

and 27 kWh, respectively. The RES contribute to the energy mix mostly during noon, while the BESS, which are 

solely charged from the RES, are fully discharged before the end of the day. Therefore, they are assumed to be at 

their technical minimum State of Charge (SOC) in the beginning of the day. The diesel generator covers the demand 

when the RES production and BESS contribution is not enough. If all of the aforementioned sources are not enough 

to cover the load, then energy is supplied by the main grid.  

 

Figure 5: Expected daily operation of the smart grid, in case of no emergencies. 

Table 3: Definition of emergency cases. 

 Disconnected component Duration 

Emergencies affecting the smart grid’s RES 

Case 1 PV + WG All day 

Case 2 PV All day 

Case 3 WG All day 

Case 4 PV + WG 11:00 - 16:00 

Case 5 PV 11:00 - 16:00 

Case 6 WG 11:00 - 16:00 

Emergencies affecting the smart grid’s BESS 

Case 7 BESS 1 + BESS 2 All day 

Case 8 BESS 1 All day 

Case 9 BESS 2 All day 

Case 10 BESS 1 + BESS 2 15:00 - 19:00 

Case 11 BESS 1 15:00 - 19:00 

Case 12 BESS 2 15:00 - 19:00 

Emergencies affecting the smart grid’s diesel generator 

Case 13 Diesel generator All day 

Case 14 Diesel generator 00:00 - 08:00 

Case 15 Diesel generator 18:00 - 00:00 



Table 3 describes the emergency cases considered in this study. These emergencies are assumed to happen both 

all day and during the hours each component contributes mostly to the energy mix. Furthermore, in the framework 

of the sustainability assessment, the specific CO2 emissions of the diesel generator and grid are considered to be 

equal to 800 gr/kWh [51,52] and 166 gr/kWh [53], respectively, since the main grid of Spain has high RES 

penetration. 

4. Results 

4.1 Autonomy and sustainability assessment 

The assessment of the system’s autonomy and sustainability for all cases considered is presented in Table 4. 

The results provide quantitative evaluation for three parameters during each emergency along with comparison 

against the respective values, when normal operation is considered: i) the autonomy during each emergency, ii) the 

use of the smart grid’s RES both directly and indirectly through the BESS and iii) the CO2 emissions required for 

the modified operation. Detailed results for each case’s baseline are presented in Table 5. Furthermore, Table 6 

presents the curtailment of RES production, which may be required if the BESS are disconnected when they would 

normally be in charging mode. Table 7 presents the post-emergency assessment in the cases where the stored energy 

after the emergency is different than it would be if the emergency was prevented.  

Overall, it can be concluded that the loss of both RES during noon hours (when their contribution to the load is 

maximized), i.e., case 4, decreases the smart grid’s autonomy during the emergency by 46%, while their all-day 

loss, i.e., case 1, decreases the autonomy by 38%. Separate results are also given for the loss of each RES, 

individually, where it is shown that the loss of the PV system has a higher impact than the loss of the WG. This is 

expected because the PV system produces daily more energy, even though the WG produces all day. However, the 

most important finding is that the loss of RES during noon hours, either entirely or partially, affects the post-

emergency capabilities of the smart grid, as presented in Table 7. More specifically, such emergencies, i.e., case 4 

– case 6, cause the discharge of both BESS, which would otherwise be charged with the surplus RES production. 

Therefore, the useable stored energy at the end of the emergency ranges from 0 kWh to 23 kWh instead of 28 kWh. 

Table 4: Autonomy and sustainability assessment. 

 
Autonomy 

(kWh) 

Autonomy 

(%) 

Autonomy 

reduction 

(%) 

RES use 

(kWh) 

RES use 

reduction 

(%) 

CO2 

emissions 

(kg) 

CO2 

emissions 

increase (%) 

Emergencies affecting the MG’s RES 

Case 1 118 kWh 48% 38% 0 kWh 100% 116 kg 97% 

Case 2 139 kWh 56% 28% 26 kWh 80% 108 kg 84% 

Case 3 175 kWh 70% 10% 106 kWh 18% 68 kg 15% 

Case 4 31 kWh 54% 46% 9 kWh 84% 22 kg N/A 

Case 5 34 kWh 60% 40% 14 kWh 75% 20 kg N/A 

Case 6 57 kWh 100% 0% 57 kWh 0% 0 kg N/A 

Emergencies affecting the MG’s BESS 

Case 7 178 kWh 72% 8% 104 kWh 20% 71 kg 20% 

Case 8 185 kWh 75% 4% 117 kWh 10% 65 kg 11% 

Case 9 192 kWh 78% 0% 130 kWh 0% 59 kg 0% 

Case 10 33 kWh 70% 30% 16 kWh 62% 16 kg 298% 

Case 11 37 kWh 77% 23% 25 kWh 40% 11 kg 180% 

Case 12 40 kWh 85% 15% 34 kWh 19% 6 kg 60% 

Emergencies affecting the MG’s diesel generator 

Case 13 130 kWh 52% 33% 130 kWh 0% 20 kg -67% 

Case 14 9 kWh 22% 78% 9 kWh 0% 5 kg -79% 

Case 15 16 kWh 16% 64% 16 kWh 0% 14 kg -57% 



The loss of the system’s BESS might decrease the autonomy of the smart grid up to 30%, which is observed in 

case 10, when the two BESS are disconnected during all of the hours that they should be discharged. The same case 

also presents the highest reduction of RES energy usage, i.e., 62%, and the highest CO2 emissions increase, i.e., 

298%, out of all emergencies related to BESS. Furthermore, according to Table 6, the whole day loss of the system’s 

BESS can lead to curtailments reaching up to 25% of RES production, i.e., 35 kWh.  

Finally, out of all cases, the diesel generator affects the autonomy of the smart grid the most, i.e., by 78%, for 

emergencies happening in the beginning of the day (case 14) when the RES produce little energy and the BESS are 

empty. Therefore, the loss of the diesel generator means that the energy that would be produced by it needs to be 

injected from the main grid, hence the vast decrease of autonomy. Also, the emergencies related to the diesel 

generator, i.e., cases 13-15, are the only ones that reduce the CO2 emissions, This is attributed to the fact that the 

main grid of Spain has an energy mix rich in RES, with lower emissions per kWh than the diesel generator. 

4.2 Detailed analysis of extreme cases 

After presenting the values related to the impact assessment of all defined cases, this sub-section aims to 

showcase the detailed results of the algorithm during some of the most extreme emergencies. Figure 6 presents the 

detailed results related to case 4, where both RES are disconnected during noon hours, having a great impact on the 

smart grid’s autonomy, CO2 emissions and post-emergency capability. The selected time-interval (noon) includes 

both RES overall peak production and load peak during noon. The absence of RES is replaced mostly by the BESS 

in the beginning of the emergency and then by the diesel generator and the main grid. As a result, the demand, 

Table 5: Autonomy and sustainability baseline. 

 Related cases 
Autonomy 

(kWh) 
Autonomy (%) RES use (kWh) 

CO2 emissions 

(kg) 

All day 1 - 3, 7 - 9, 13 192 kWh 78% 130 kWh 59 kg 

[00:00 - 08:00) 14 41 kWh 99% 9 kWh 26 kg 

[11:00 - 16:00) 4 - 6 57 kWh 100% 57 kWh 0 kg 

[15:00 - 19:00) 10 - 12 47 kWh 100% 42 kWh 4 kg 

[18:00 - 00:00) 15 46 kWh 45% 16 kWh 33 kg 

Table 6: Curtailments assessment. 

 Curtailments (kWh) Increase of curtailments (%) 

Emergencies affecting the smart grid’s BESS, whole day emergencies 

Case 7 35 kWh (25% of production) N/A (0 kWh normally) 

Case 8 17 kWh (13% of production) N/A (0 kWh normally) 

Case 9 0 kWh (0% of production) N/A (0 kWh normally) 

Table 7: Post-emergency assessment. 

 Usable stored energy after the 

emergency (kWh) 

Usable stored energy without 

emergency (kWh) 

Emergencies affecting the smart grid’s RES during peak production and noon demand [11:00 - 16:00) 

Case 4 0 kWh 28 kWh 

Case 5 0 kWh 28 kWh 

Case 6 23 kWh 28 kWh 

Emergencies affecting the smart grid’s BESS during discharge [15:00 - 19:00) 

Case 10 30 kWh 0 kWh 

Case 11 20 kWh 0 kWh 

Case 12 10 kWh 0 kWh 



which would otherwise be mostly covered by PV production, is covered by the main grid, 46%, the diesel generator, 

38%, and the two BESS, only 11% and 5%, respectively. Also, the SOC of both BESS reaches their technical 

minimum, instead of increasing.  

Case 8, where BESS 1 is disconnected throughout the day is also interesting to analyze further, as it does not 

only require curtailments, but also challenges the limits of the other BESS, as presented in Figure 7 and Figure 8. 

More specifically, when the RES production exceeds the demand, BESS 2 is being charged with all the energy that 

should normally be provided to both BESS. However, since BESS 2 has limited capacity, it soon reaches its 

maximum SOC and all the remaining available energy, 17 kWh (13% of RES production), is curtailed. As a result, 

the demand is covered 42% by the RES, 28% by the diesel generator, 25% by the main grid and only 5% by BESS 

2. 

Furthermore, regarding BESS-related emergencies, it is critical to further analyze the modified operation of the 

smart grid in case 10, where both BESS are disconnected when they should be discharged, i.e., 15:00 – 19:00. As 

previously described, this is an extreme case because it compromises the autonomy during the emergency by 30% 

and increases the CO2 emissions by 298%. The detailed results of case 10 are presented in Figure 9. It is noted that 

 

 

Figure 6: Smart grid operation and energy mix for Case 4 (PV + WG disconnection 11:00 - 16:00). 

 

 

Figure 7: Smart grid operation and energy mix for Case 8 (BESS 1 disconnection, all day). 



the BESS are replaced by the diesel generator, in order to preserve the smart grid’s autonomy as much as possible, 

and when its maximum production is not sufficient either, the demand is covered by the main grid. As a result, the 

demand is covered 36% by the diesel generator, 34% by RES and 30% by the main grid. Yet, it is highlighted that 

once the two BESS are reconnected they shall have 30 kWh usable stored energy, instead of 0 kWh, which is also 

mentioned in Table 7. Therefore, the negative impact of their disconnection can be compensated by their 

reconnection at 19:00. 

Finally, case 15, which focuses on the loss of the diesel generator during the peak of the load, including the 

hours when the EVs are fully charged, is presented in Figure 10. In this case, the production of the WG is low and 

the contribution of the BESS is insufficient to cover the demand. Therefore, 84% of the demand is covered by the 

main grid. This reduces the autonomy by 64%. The rest of the demand is covered by the WG, 8%, and by the two 

BESS, 5% and 3% respectively.  

5. Conclusions 

This paper presents a novel algorithm for handling emergencies in smart grids and assessing their impact. It 

comprises an optimizer that maximizes the autonomy of the smart grid, supported by an ANN-based forecaster. The 

 
 

Figure 8: Use of RES for Case 8 (BESS 1 disconnection, all day). 

 

 

 

Figure 9: Smart grid operation and energy mix for Case 10 (BESS 1 and BESS 2 disconnection 15:00 - 19:00). 



algorithm is part of the DSS developed in the context of the European Horizon 2020 TIGON project and is tested 

on a model of the project’s demo-grid, located in Spain. The results showcase the impact of various emergencies 

related to the disconnection of major components, such as PVs, BESS, etc., on the smart grid’s autonomy and 

sustainability. It is found that an emergency affecting the smart grid’s RES during noon might cause up to 46% 

reduction in its autonomy, while an emergency affecting the BESS might cause curtailments up to 25% of RES 

production. In addition, the study showcases the importance of having a rich mix of energy sources and storage 

systems, which may cover, either fully or partially, the demand in case one component needs to be disconnected. 

Regarding the CO2 emissions, it is noted that even though the diesel generator is beneficial for the smart grid’s 

autonomy, it may be more harmful for the environment in comparison to the energy injected from the main grid if 

the latter incorporates enough RES production to have lower emissions per kWh.  

The algorithm is verified with the use of PowerFactory and is expected to be applied on the actual demo-grid 

of the project in the next months. The actual monitored results are expected to be incorporated in a future 

publication, validating the proposed solution in real-life conditions. Additionally, combinations of emergencies, 

e.g., PVs and BESS, are considered to be studied in future work.  
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Figure 10: Smart grid operation and energy mix for Case 15 (diesel disconnection 18:00 - 00:00). 
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Nomenclature 

Acronyms 

ANN Artificial Neural Network 

ARMA AutoRegressive Moving Average 

BESS Battery Energy Storage System 

DER Distributed Energy Resources 

DSS Decision Support System 

EMS Energy Management System 

EV Electric Vehicle 

MAPE Mean Absolute Percentage Error 

MILP Mixed Integer Linear Programming 

MINLP Mixed Integer NonLinear Programming 

PV Photovoltaic 

ReLU Rectified Linear Unit 

RES Renewable Energy Sources 

RMSE Root Mean Squared Error 

SAIDI System Average Interruption Duration Index 

SAIFI System Average Interruption Frequency Index 

WG Wind Generator 

Symbols 

𝐴 Actual/real value 

𝐶 Energy charged to storage 

𝐷 Energy discharged from storage 

𝐹 Forecasted value 

𝐺 Production of generator 

𝐿 Load 

𝑀 Main grid 

𝑃 Profile 

𝑅 Energy from RES 

𝑆 Stored energy 

𝑏 Neuron’s bias 

𝑓 Activation function 

𝑛 Number of data points in the training set 

𝑢 Binary decision variable 

𝑤 Weight 

𝑥 Value of the dataset 

𝑦 Neuron’s output 

Greek Letters 

𝜂 Efficiency 

Superscipts and Subscripts 

𝑏 Index of BESS 

𝑐ℎ Charge of storage 

𝑐𝑢𝑟𝑡 Curtailment 

𝑑𝑐ℎ Discharge of storage 

𝑔 Index of generators 

𝑖 Rows of dataset 

𝑖𝑛𝑖 Initial value 

𝑗 Neuron’s edge 



𝑙 Index of nodes 

𝑚𝑎𝑥 Maximum value 

𝑚𝑖𝑛 Minimum value 

𝑛𝑜𝑟𝑚 Normalized value 

𝑜𝑛 Activation of generator 

𝑟 Index of RES 

𝑡 Time 

𝑡𝑒𝑠𝑡 Value of testing Set 

𝑡𝑟𝑎𝑖𝑛 Value of training Set 

𝑢𝑠𝑒 Used energy 

𝑣 Index of EVs 
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